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Natural-frequency Analysis of Laminated
Composite Shell

E. Kormanikova

Abstract— The paper deals with a numerical approach of modebtained by keeping non-linear terms of the Von Karman type
frequency analysis of a simply-supported laminated doubly curvédr amplitudes of about two times the shell thickness.
shell. For laminated shell the first-order shear deformation theory is
capable of accurately predicting the shell behaviour. Transverse
displacement field leads to using shear correction factor. Theory is
also based on the assumption that the thickness to radius ratio of sh@minate shells can be also modelled as two-dimensional
is small compared to unity and hence negligible. The governirgjructural elements but with single or double curved reference
equations are derived in orthogonal curvilinear coordinates and thewrfaces (Fig. 1). Figure 1 shows a laminated doubly curved
these equations are rediced to those of doubly curved shell. Lingainel of rectangular platform, of total thicknéss

layered structural shell elements are used in FEM analysis. Thfie coordinateg;andx, represents the directions of the lines
natural frequencies of laminated orthotropic doubly curved shell wi curvature of the middle surface, while the- axis is a

simply supported ends are solved. The numerical analysis Ifraight line perpendicular to the middle surface (Fig.Rp).

conducted to determine the effect of symmetry with respect to mi 1 2) d h incioal radii of f1h qdl
plane, fibre orientation and width-to-thickness ratio to change =L ) denotes the principal radii of curvature of the middle

resonant frequencies. surfac.e. . . .
The displacement field, based on first-order shear deformation

Keywords— Vibration Analysis, Laminated Composite Shell,theory, is given by
FEM analysis.

Il. ANALYTICAL ANALYSIS

u = (1+x,/ RO, + stl:(:

_ Ju
I. INTRODUCTION u, = 1+ X,/ R, + X, 673

Composite materials like fibre reinforced plastics are often _ _ ?

used in fields like automotive, aerospace, and civ_|'II3_u? ] @)
engineering [1,2,3]. Composites are most often used iy Which u, (i =1, 2, 3) represents the components of

lightweight structures where the laminated shells tend to kiésplacement at a poin§ (i = 1,2,3), whileg denotes the

thin with respect to their in-plane extensions. _ same for the corresponding point at the mid-surface.
Layered shell models are used more and more in structupdlymptions of shallowness, vanishing geodesic curvatures,
analysis with new material systems. The large amount gf,q\erse inextensibility and the strain displacement relations

literature in this field indicates how many different problemg,. - qouble curved shell. based on first-order deformation
and mechanical situations are addressed by shell analyﬁil%ory are given by '

Wung [4] presented a continuum-based shell element with _ _ = _=

transg\]/e[rs]e pdeformation. The element is based on first-order * ¥4 EamEp T XN, 4= 24

shear deformation theory (FSDT) and fourth-order transverse

deformation. Whitney and Pagano [5] developed a Mindlinés = € E5= & T XK )
type FSDT for multi-layered anisotropic plates. Similawhere

classical laminate theory (CLT) and FSDTs are developed for

multi-layered shells [6,7]. The free vibration investigation of. _du, U, . _0u, U g 20U U

simply supported sandwich plate is presented in [8]. The statit ax, R 2 ox, R, ‘o R
and dynamic analyzes of single- and multi-layered plates and

shells are investigated in [9-12]. Amabili and Reddy [13] du, u

: . oL _ 2 . _0Up, 0u €)
worked on the use of higher order shear deformation nonline&r= 5" € +

: . 0%, R, ax  ox
theory for shells of generic shape, taking geometric : R % 2
imperfections into account. They found that results were PEY 92U
— 3 - 3
K = X12 Ky = axz
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Fig. 1Double curved laminated shell and layout of layers [11] - -
. o Ng = Ir6dz Mg = .[rszdz @)
The curved shell geometry, illustrated in Figure 2 [14], is h h
described by the coordinates, (X3, x3) and it is subdivided 2 2
into angular segments with the apex anglgs ds and )
constant curvature radii of the centerlRgandR. 2 "2 ®)
V, = I r,dz V, = I r,0z
h h
2 2
+h/2 +h/2
N = _f E(z)dzz + IE(Z)ZdZK
-hy2 -hy2
+h/2 +h/2
M = _[ E(z)zdzz + IE(Z)ZZdﬂ(
-y2 -y2
+h/2
( ) _[ E' dzy (9)
-h/2

The individual components are written in following general
Fig. 2 Geometry of double curved laminated shell form

It is assumed that the transverse normal stress is negligible in
general, it is verified thag, is small compared tg,.and 7,,, Au[

ou, U, Ju, u
e N 2 4 78 |+
ox, RJ A”(axz RJ

except near the shell edges, so that the hypothesis is a good

10
approximation of the actual behavior of moderately '[h|ck+AL ou, | 0y, +B, 9°u, Y 0°u, + (10)
shells. The stress—strain relations for thh orthotropic 0x, 0%, tox? 2 ox?
lamina of the shell, in the material principal coordinates are o%u 101 1You ou
obtained under the hypothesgjs= o, Bl{ 3 —( —J[—D
oxox, 2\ R R, \0dx 0%,
(n) (n)
o fu G 0000 o N,=A % +A au2 U |,
o, i c, C, 0 O O & 5) 2 1 ox, Rl 2 0X2 R,
g,y =/ 0 0 G, 0 O &, . au pey 0% (12)
Os 0 0 0 G; O & +A26(02+01J+ Bz1T;+Bzz P) o+
o, 0 0 0 0 G, |& %% % %
+p [0 0U _1(1 ](6u2 aul]
where Gys, Gy3 Gy, are the shear moduli, the superscript ( " ox,0x, R R N\ox 0%
refers to then-th layer within a laminate. Eq. (5) is obtained
under the transverse isotrophy assumption with respect to u
planes orthogonal to axis 1, so tEat Eg, V1, = 13 andG,= AGI[ Rj] Asz[ ™ RZJ +
Glg. 2
The internal forces can be written in following form du, = du, 0°u, 0°u, (12)
+A667+7 +Bel 2+Bez > 1
0%, 0x, ax1 0X;
Nl Ml 2
V,
N=INf MM, f o Ve ®) +B, 26‘3”3 Jif1_1Y0u, oy
2 XlaXZ Rl RZ aXl aXZ
N Ms
where
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ou, u
3 2 3 +
%{M_RJ %b& %j
0%u Uy
11 axlz 12 aX22

+D1626u3 _1 1 ou, 0y,
0X%,0X, R1 R2 0% ax2

au, au
+ B,y —2 +
[ 0%, 0x, J

_ Bz{au ug}r Bzz[auz+u3J+
ox R %, R
a%u d%u
D,,—>+D,,—+
21 axf 2 ox?

9%y, 111 ou, _du,
Dl 2 -
0X,0X, R1 R2 0%, ax2

Mg

2 2
+BGG[OUZ+OUZLJ+D616 u3 +D626 u3 +

2
DG{Z 0°U,
0%,0%,

V,=

The internal forces can be written in hypermatrix form

{Ej

= B61[ ou, u3] + 86{0112 + U3J +
% R ox R

ox, 0x, ox’ x>

daelas)

ou, u ou, u
I(l 4 2 L 27 55 2 z
AA[ 0%, Rl] ps[axz sz

V=k Ky

e ol

(13)

(14)

(15)

(16)

17
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IIl.  FINITE ELEMENT ANALYSIS

The basic idea of the FEM is a discretisation of the continuous
structure. The discretisation is defined by finite element mesh
make up of elements nodes. The starting point for elastostatic
problems is the total potential energy. In accordance with the
Ritz method the approximation is used for displacement field
vector by notation

U(x) =[gl(x v,

where @ (x) is the matrix of the shape functions, that are
functions of the position vectorx and v is the element
displacement vector.

For the stresses and strains we obtain

(19)

o(x)=Ee&(x)=ED¢g(x)v

£(x) = Du(x) = Dlg](x)v =

The total potential energy is a function of all the nodal
displacement components arranged in the element
displacement vector. The variation of the total potential
energy

(20)

a1=a7| [BTEBvAV - [[o] pav - [[¢] qdo (21)
v v 0,
leads to
& (kv-tf,-f,)=0 (22)

wherep, q are volume and surface loadings, respectively and
K is the symmetric stiffness matrix given by

K :jBTEde (23)

. . \
where N is the membrane force resultant vectbt,is the he yectors of the volume forces and the surface forces are
moment resultant vector arM is the transverse shear forcewntten by

resultant vector.

A=

+h/2 N "z

-y2 n=1 n1, n=1

+h/2 N "z N n,2 n122
B= [E(z Zj“Ezdz—Z”E

-h/2 n=1 n-1, n=.

+h/2 n_3_n-1,3
= 7)2%dz = Ezzdz: e

_J/z z—jL"'[ n 3

+h/2 N n

[E(2)dz=)"E"h

-h/2 n=1
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In additionA, D, B denote the classical
extensional stiffness matrix, bending stiffness matrix an
bending-extensional coupling stiffness matrix,
whereasA is the shear stiffness matrix [15,16].

The components &, B, D, A matrix are written as

respectivelyf

ép _J.[MT pdv
.= Jl¢l ado

If the components ofdyare independent of each other, we
obtain from Eqg. (22) the system of linear equations

(24)

Kv = f

f = fp + fq (25)
All equations considered above are valid for a single finite

element and they should have an additional irilewe have
the inner element energy

U, = %v; [BTEBdWY, = %VEKEVE (26)
VE

(18)with the element stiffness matrix
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K :.[BTEBdV ELp ToP
E

Ve P:.N\I

N
E= "E 1

~ Sl\ @

_ S ' @
e=T'(f'eT(8) (27) e N
where E is the elasticity matrix obtained with suitable i‘("‘@ =,
transformations in two stages, firstly from the principal g 5/_/% =2
material directions to the element local directions and secondly * 5 L @
to the global directionsB is the strain matrix,T is the 1
transformation matrix with y  Element Coordinate System
— - >
T(a)=( ()" (28)

. . . o Fig. 3 SHELL99 linear layered structural shell [19]
The system stiffness matrix is also symmetric, but it is a

singular matrix. After consideration of the boundary conditions

of the whole systenK becomes a positive definite matrix and ) o o
the system equations can be solved. The main objective of any modal analysis is to make sure the

FE analysis is sensitive regarding to the strains and stresSESCtUre is not subject to resonant frequency under the range
(post-processing results) because the secondary solutffroPeration. Natural frequency is the frequency at which the
converges slower than the primary solution. Quadratiructure vibrates if the forcing function is identically zero.
elements have two basic disadvantages: the numerical effbf€ lowest natural frequency is often referred to as the
increases and the meshing of a free-form surface is mdpgdamental frequency, which is the most important parameter
complex because the thickness-to-curvature ratio has to 19& d€sign engineers as many of the systems are designed to
considered. Recently improvements in computing powePPerate below it _
memory, and meshing algorithms make these elements mg’,}éere are several mode extraction methods. Each method has
useful. The gain of higher shape-function approaches are belt&©oWn advantages and disadvantages. The method that is used
displacement, strain, and stress results. In addition, cur&the present work is the subspace method. Modal analysis is
surfaces are mapped better because the shape functionstifdreliminary step of a dynamic transient analysis.
also used to describe the element geometry (isoparameFrR;r the finite element analysis, if the damping is neglected, the
elements). The element descriptions are presented by césation of motion of the structure for free vibration can be
[17]. The quadratic shape functions of the 6-node and 8-noff&tten as
element (Fig. 3) are given in Equation 29 and 31, respectively o V(t)+Kv(t)=0 (32)
[18].

The quadratic shape functions of the 6-node element habke particular solutions are
following form

IV. MODAL ANALYSIS

@, =L,(2L, -1) vt)=v°sinlwt) and  v(t)=vcoslwt) (33)
@,=1,(2L,-1)
@,=1,(2L,-1) Than we get
®,=4LL, (K -w’'M D)\/? =0 (34)
@, =4L,L, whereK is stiffness matrixy? is mode shape vector of moge
@, =4L,L, (29&)J- is the natural circular frequencm;j2 is the eigenvalue and
where Mp is the mass matrix.
L=1-¢é-n.L,=¢fand,=p. (30) After modification of (34) we get
The quadratic shape functions of the 8-node element (Fig. 3)
written in dimensionless coordinates are used in this study. M D’l(K — M )\/9 =M. D'-w?’E.V°=0 (35)
] DJ%j D j—DbYj

@, = 02§1-¢)1-n)(-¢-n-1)
@, = 0241+ &)(L-n)(é-n-1) where
@, = 0241+ ¢)(L+n)(¢ +1-1) Dr=M, 'K =K, (36)
®, = 025(1— f)(1+/7)(—5+/7 —1) The equation (35) means the eigenvalue problem, wh,;ére

— _ g2 _
@5 = 05(1 ¢ )(1 ) are eigenvalues of the matrx™ and vjare natural modes of
@, = Qg1+ ¢)i1-1°) vibration.
@, = Qd1- & Ji+7)
®, = Q51-¢&){1-1?) 31)
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V. EXAMPLE AND RESULTS

following dimensions is selected:
a=b=08mR; =R, =2.4m h=8mm.

An unidirectional fiber reinforced composite laminate layer

consists of isotropic fibers:
E; =270 GPay; = 0.3, p, = 1800 kg-rit

and isotropic matrix:
En=5 GPayy = 0.3, p,, = 1500 kg-rii.
The fiber volume fractior = 0.4and fiber diameted = 9um.

Most fiber reinforced composites have a random arrangement
of the fibers at the micro-scale. A random microstructure
results in transversely isotropic properties at the meso-scale. A
simpler alternative is to assume that the random microstructure
is well approximated by the hexagonal microstructure (Fig. 4).

Fig. 4 Hexagonal microstructure model

Volume 12, 2018

TABLE Il
COEFFICIENTS OF THE THIRD COLUMN OF STIFFNESS TENSOR

\ [HmS] Ci3[MPa]  Cy[MPa] Cs3 [MPa]
134.705 5463.073 5209.964 13006.08
TABLE IV

COEFFICIENT OF THE SIXTH COLUMN OF STIFFNESS TENSOR

V [pm’] Ces [MP2]
1074.64 2166.161
TABLE V
SUMARY OF RESULTS OF HEXAGONAL NUMERICAL MODEL
E;=E; [GPa] 110.999
E,[GPa] 10.824
V1o = V13 0.3
Vs 0.388
G]_z: Gl3 [G Pa] 4.79
Gys[GPa] 3.899

Four-layer cross-ply [0/90/90/0], [0/90/0/90] and angle-ply
[45/-45/-45/45], [45/-45/45/-45] laminates are analysed to
study the effect of symmetry to change the
frequencies (Tabs. 6).

From the Tables 6 can be seen, the frequencies in the case of
angle-ply laminate are higher than in the case of cross-ply
laminate. The frequencies in the case of symmetric layup are

resonant

An analysis of microstructure yields a transversely isotropthe same than in the case of anti-symmetric layup for both
stiffness tensor

where the 1-axis aligned with the fiber direction and an over-
bar indicates the average computed over the volume of the

SIS

Cu C, Cp 0 0 0 &
Cp Cp Gy 0 0 0 &,
|Ci Cx Cp 0 0 0|lg (37)
0 0 0 ;(sz_czs) 0 0 ||Va '
0O 0 O 0 Cs O ||V
|0 0 O 0 0 Cg|Ue

RVE.

Coefficients of the stiffness tensor are written in the Tables 1-

4.

TABLE |
COEFFICIENTS OF THE FIRST COLUMN OF STIFFNESS TENSOR

V[um’] Cu[MPa] Cx[MPa]  Cs[MPa]
134.705 114277.5 5463.704 5463.3129
TABLE Il

COEFFICIENTS OF THE SECOND COLUMN OF STIFFNESS TENSOR

V[um’] Cip[MPa] Cxp[MPa]  Cy[MPa]

134.705 5464.704 13006.51 5209.964
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kinds of laminates.

TABLES VI
INFLUENCE OF FIBER ORIENTATION ON FREQUENCIES
Frequencies 1 2" 3¢
[0/90/90/0] 6.472 6.923 7.599
[0/90/0/90] 6.472 6.923 7.599
[45/-45/-45/45]  8.145  8.234  8.663
[45/-45/45/-45] 8.145 8.234 8.663
Frequencies ™y 5 6"
[0/90/90/0] 7.766 7.894 8.064
[0/90/0/90] 7.766 7.894 8.064
[45/-45/-45/45]  8.796  8.904  8.986
[45/-45/45/-45] 8.796 8.904 8.986
Frequencies thy 8" o"
[0/90/90/0] 8.499 9.274 9.613
[0/90/0/90] 8.499 9.274 9.613
[45/-45/-45/45] 10.532 10.630 11.009

[45/-45/45]/-45] 10.532  10.630 11.009
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- STEP=1
op =2
FREQ=6. 9234
usuMm (ave)
Reved
Totr = 960203
i = o0m-03
'
h 2130 “azre0 “ean 03 5903
1078-03 520805 .s338-03 747603 .se0e-03

Fig. 5 The first five natural modes of double curved laminated shell 33?2 )
[0/90/90/0] S

aMx =.955E-03

Fig. 6 The first five natural modes of double curved laminated shell
[45/-45/-45/45]

0 .2128-03 .4258-03 .6378-03 .8498-03
.106E-03 .318E-03 .531E-03 .7438-03 .955E-03

© NODAL soLUTION

sTEE=1
sUB =4
FREQ=7.76671
vsum (ave)
REYE=0

sMX =.001034

NODAL SOLUTION

aTER=1
sUB =1
FREG=6.47196

suM (ave)
R8YE=0

DMX =.936E-03
aMx =.936E-03

0 .2308-03 L 460E-03 L689E-03 .919E-03
.115E-03 .3458-03 .575E-03 .804E-03 .001034

1
NODAL SOLUTION

sER=1

=5
FREQ=7.85354
M (ave)
Revs=0

sMX =.001008

.208E-03 L4168-03 . 6248-03 .832E-03
.104E-03 .312E-03 .520E-03 .728E-03 .936E-03

) .224E-03 .448E-03 . 672E-03 .896E-03
.112E-03 .336E-03 .Se0E-03 .784E-03 .001008

Fig. 7Displacements of the first five natural modes of double
curved [0/90/90/0] laminated shell, respectively
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NODAL SOLUTION
sTER=1

sMx =.001047

.930E-03

.465E-03 . 698E-03
.581E-03

0 .233E-03
.1168-03 .349E-03

.8148-03 .001047

NODAL SOLUTION

Reva=0
DMX =.001282
sMx =.001282

.8548-03 .001139
.997E-03 .

o .285E-03
.142E-03 .427E-03

.S70E-03
.712E-03

001282

NODAL SOLUTION

sTER=1
UB =3

FREQ=8. 66266
usuM (ave)
R8YI=0

DMX =.001003
aMx =.001003

.8918-03

.4468-03 . 668E-03

o .223E-03
.S57E-03

111E-03 .334E-03

.780E-03 001003

Volume 12, 2018

NODAL SOLUTION

sTER=1

SUB =5

FREQ=8. 90398
(ave)

R3YS=0

DMX =.00113

sMxX =.00113

.7548-03 .001005
.8798-03 00113

.502E-03
.377E-03 . 628E-03

0 .251E-03
.1268-03

Fig. 8 Displacements of the first five natural modes of double curved
[45/-45/-45/45] laminated shell, respectively

From the Figs. 5-8 can be seen, the natural modes in the case
of angle-ply laminate are more complicated than in the case of
cross-ply laminate.

TaBLE VII
INFLUENCE OF BH RATIO TO FUNDAMENTAL FREQUENCY

b/h ratio [0/90/90/0]  [45/-45/-45/45]
100 6.47196 8.14533
200 6.45032 7.54193
400 6.44501 7.14498
800 6.44344 6.88707

1000 6.44301 6.83161

In the Table 7 the width-to-thickness ratio is analysed. As can
be seen from Table 7, d¥h increases, the fundamental
frequency decreased. Degrease of fundamental frequency is
more evident for{45/-45/-45/45]laminate than for{0/90/90/0]
laminate.

TasLE VIII
INFLUENCE OF FIBER ORIENTATION TO FUNDAMENTAL FREQUENCY

NODAL SOLUTION

FREQ=8.79595
s (ave)

DX =.001144
sMx =.001144

E— —
.S09E-03 .7638-03 001017
.381E-03 . 636E-03 .890E-03

0 .254E-03
.127E-03
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.001144

[a/—a/—a/a]

[a/—a/a/—a]

a

0 5.65538 5.65538
15 5.91056 5.91056
30 6.63442 6.63442
45 8.14533 8.14533

Four-layer symmetricja/-a/-a/a] and anti-symmetric
[@/-alal-a] laminates with the angle of fibre orientation

varying from @ — 45 with b/h = 100 are analysed. As can be
seen from Table 8, an increase of fibre orientation angle leads
to an increase in the frequency of vibration. Also as it was
written, the frequency in the case of symmetric layup is the
same as in the case of anti-symmetric layup of laminates.

VI.

DISCUSSION AND CONCLUSION

The material properties of unidirectional fiber reinforced
composite are done by the numerical homogenization [20] of
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unidirectional lamina (Table 5). Within the numericalll4] R. Roos,Model for interlaminar normal stresses in doubly curved

homogenization, the hexagonal microstructure model was Izaér(;igateﬁ Dissertation, Swiss Federal Institute of Technology, Zurich,
assumed in RVE. The numerical homogenization was done ¥] U. Topal, “Frequency Optimization of Laminated Composite Spherical

using the Finite Element Method [21] in the program ANSYS.  Shells*, Science and Engineering of Composite Materials, 19,381-386,
In the paper, mode-frequency analysis of laminated double 2012.

curved shell using a finite element model, based on first-ord@f] M. Krejsa, J. Brozovsky, D. Mikolasek, R. Halama, J. Kozak,
. . Numerical modeling of steel fillet welded joint“Advances in
shear deformau_on t_heory is presented. _ _ Engineering Software, 117, 59-69, 2018.
The frequencies in the case of angle-ply laminate are higher] rR.D. Cook, D.S. Malkus, M.E. Plesha, and R.J. Woncepts and
than in the case of cross-ply laminate. The frequencies in the applications of finite element analysis. John Wiley and Sons, fourth
case of symmetric layup are the same than in the case of antj- edition, 2002.

. . . EH.S] J.N. Reddy,Mechanics of Laminated Composite Plates and Shells:
symmetric layup for both kinds of laminates. The natur Theory and Analysis, second ed., CRC Press, Boca Raton, FL, USA,

modes in the case of angle-ply laminate are more complicated 2q0a4.
than in the case of cross-ply laminafes width-to-thickness [19] http://www.ansys.stuba.sk/html/elem_55/chapter4/ES4-99.htm
ratio b/h increases, the fundamental frequency decreasdgP] H. Massow, W. Becker, “Homogenization of Folded Sandwich Core

Degrease of fundamental frequency is more evident for [45/- ggf;ture »International Journal of Mechanics, vol. 11, pp. 25-33,

45/-45/45] laminate than for [0/90/90/0] laminate. An increasgi] o. sucharda, J. Vasek, and J. Kubosek, “Elastic-plastic calculation of a
of fibre orientation angle leads to an increase in the steel beam by the finite element methothternational Journal of
fundamental frequency of vibration. Mechanics, vol. 9, pp. 228-235, 2015.
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